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A fragmentation specimen consists of a single fibre embedded along the axis of a long 
narrow resin block. When the fibre is broken by a tensile load, either a lateral crack runs 
outwards into the resin, initiated by the break, or a debond (or equivalently a cylindrical crack 
in the resin) propagates along the fibre. Debonding always occurs with thin fibres. Strain 
energy release rates have now been calculated, analytically for long debonds and by FEA for 
short ones. The force to propagate a debond is found to increase as the debond grows, 
reaching a final value, termed "pull-out force", that is higher for softer fibres. If this force 
exceeds the strength of the fibre, then the fibre breaks again. This is the proposed 
mechanism of fibre fragmentation. For weakly-bonded, stiff fibres, the inferred minimum 
distance between breaks, i.e. the critical fragment length, is deduced to be of the order of the 
geometric mean of the radii of fibre and resin block, about 0.1-0.5 mm for typical 
fragmentation specimens, and it increases as the ratio of fibre stiffness to resin block 
stiffness increases, in agreement with observation. 

1. Introduction 
A common test for adhesion uses a single fibre embed- 
ded along the axis of a resin block. When a sufficiently 
large tensile force is applied to the specimen, parallel 
to the fibre, the fibre breaks repeatedly until it breaks 
no more. The average length of the resulting frag- 
ments, denoted Ic, is an inverse measure of adhesion; 
the smaller lo, the greater is the inferred strength of 
adhesion between resin and fibre. From a balance of 
forces Kelly and Tyson [-1] derived a relation between 
lo and the shear stress q causing failure at the interface: 

l c / r f  = C~b/'q (1) 

where rf is the fibre radius and (5" b is the fibre breaking 
stress. However, the interracial breaking stress ~i is 
a somewhat ill-defined quantity that cannot be meas- 
ured independently. Most adhesion tests are now in- 
terpreted instead in terms of a characteristic fracture 
energy Ga, defined as the energy required to propagate 
a debond through unit area of interface. For  example, 
the pull-out force, F, for an inextensible rod or fibre of 
radius rf embedded in an elastic block of cross- 
sectional a r e a  A m is given by [2]: 

F 2 = 4 ~ r f A m E m G a  (2) 

where Em is the tensile (Young's) modulus of the resin 
block. If the strength of adhesion is high, then pull-out 
takes place by growth of a cylindrical crack in the 
resin, near the interface, instead of by debonding from 
the fibre. In this case G, is replaced in Equation 2 by 
the fracture energy Go of the resin. Additional work 
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expended in frictional sliding can be included in the 
analysis, at least to a first approximation [3, 4]. We 
now seek to interpret fragmentation tests in a similar 
way, in terms of a fracture energy G~ or G~. 

After the fibre breaks, debonds or cracks in the resin 
near the interface are assumed to propagate along the 
fibre, away from the break. The force required to cause 
these cracks to propagate is assumed to increase 
as they grow in length, so that it eventually reaches 
a level at which the fibre breaks again somewhere else. 
This is the proposed mechanism of fragmentation. 
However, it requires a debonding ("pull-out") force 
that "rises" as the debonded length increases, whereas, 
according to Equation 2, the force required to propa- 
gate a debond along an embedded rod or fibre, start- 
ing from the embedded end, is "constant". Previous 
studies [-3-5] have therefore focused on frictional con- 
tributions to the pull-out force, because they lead 
naturally to increasing force as the debond grows. (If 
the pull-out force does not increase there is no reason 
why a broken fibre should break again.) But the fric- 
tional contribution is small for small-radius fibres and 
for small debonds [4], and it seems too small to play 
an important role in fragmentation of fine fibres. 
Many technical fibres are only about 5 ~tm in radius 
and have fragmentation lengths of only about 
0.5-1 mm. It seems unlikely in these cases that sub- 
sequent fractures are caused by a frictionally-induced 
rise in pull-out force. In order to account for repeated 
fracture of the fibre another mechanism must be in- 
voked for an increase in pull-out force as debonding 
proceeds. We have now carried out finite element 
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analysis (FEA) on fine fibres in the early stages of 
debonding, in order to examine the relation between 
pull-out force and debond length. The results are 
reported here. 

Data on typical fragmentation lengths can be 
obtained from the literature. For  single glass fibres 
embedded in epoxy resin, DiBenedetto and Lex [6] 
reported values of lc in the range 0.15 to 0.55 mm. 
Bascom and Jensen [7] reported fragment lengths in 
the range 0.2 to 1 mm for various carbon fibre/epoxy 
combinations. Baxevanakis et al. [8] obtained average 
fragmentation lengths of about 0.25 mm for a similar 
system. Netravali et al. E9] obtained values in the 
range 0.4 to 1.2 mm for a glass fibre/epoxy system, 
using fibres with radii between 5 and 13 gm. Thus, for 
typical combinations of fibre and resin, fragment 
lengths are typically between 0.1 and 1 mm. From 
studies over a much broader range of resins, however, 
Asloun et al. [10] concluded that the critical frag- 
mentation length is related to t~he ratio of Young's 
(tensile) modulus Ef of the fibre to the modulus Em of 
the resin, as well as to the interracial bond strength. 
For  well-bonded systems, in which failure probably 
took place in the resin, rather than at the interface, 
they found that log (lo/rf) increased linearly with log 
(Ef/Em), with a slope of about 0.5. However, two differ- 
ent relations were obtained: 

le / r  f = 9.4 (Ef/Em) 1/2 (3) 

for stiffer glassy and thermoplastic resins, and 

lc/r f = 1.3 (Ef/Em) t/2 (4) 

for elastomeric resins. Although a dependence on elas- 
tic moduli would be expected, these particular results 
have not been accounted for theoretically up to now. 

Recently, Gent and Wang [11, 12] studied two 
modes of failure after an embedded fibre breaks: inter- 
facial debonding or cracking, leading to pull-out of the 
fibre, and lateral cracking of the resin block causing 
fracture of the specimen. For  inextensible fibres they 
showed that pull-out was preferred for small-radius 
fibres, even when the bond strength had the maximum 
possible value, equal to the fracture energy Go of the 
resin itself, whereas lateral cracking was preferred for 
large-radius fibres. But they did not consider the ques- 
tion: why do fibres break repeatedly? We now take up 
this question again, and use similar FEA methods to 
investigate the mechanics of fracture of a single-fibre 
specimen in which the fibre radius is extremely small 
in comparison with the width and thickness of the 
resin block, as is customary in fragmentation tests. 
The compliance of the fibre is therefore comparable to 
that of the resin even though its tensile modulus may 
be much higher. 

2. Theoretical considerations 
2.1. In te r fac ia l  f a i l u re  
For an inextensible fibre embedded in a block of an 
elastic resin the pull-out force is given in Equation 2. If 
the fibre is extensible, however, energy is stored in it as 
well as in the resin. For  a long thin specimen, Fig. 1, 
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Figure 1 Sketch of fragmentation specimen with a broken fibre. 

equal tensile strains e b are set up in both fibre and 
resin in the still-bonded portion of the specimen, and 
a larger tensile strain eu is set up in the unbonded resin 
portion, where e b and eu are given by 

eb = F~ (AfEf + AmEm) (5) 

and 

e u = F l A m E  m (6) 

where Af and Am denote the cross-sectional areas of 
fibre and resin, respectively. If they are both cylin- 
drical, then Af = ~r 2 and Am = ~(r 2 - r } ) .  Elastic 
moduli are Ef for the fibre and E m for the resin. 

Strain energy AW is imparted to the specimen when 
a further length kc is debonded, where 

A W / A c  = F (eu - eb)/2 (7) 

and fracture energy of amount AWa is expended, 
where 

A W a / A c  = 2rcrrGa (8) 

Pull-out of the fibre will occur when the work done, 
given by F ( e u -  eu)Ac,  is as large as AW + AWa. 
Thus, from Equations 5 8, the reduced pull-out force 
F*, defined as F/(EmGa) 1/2, is given by 

F .2 = 4~rfAm[1 + a -  t] (9) 



where a denotes the relative stiffnesses of fibre and 
matrix: 

O~ = A f E f / A m E r n  (10) 

Note that Equation 2 is recovered when ~ > 1, i.e. 
when the stiffness of the fibre is much greater than that 
of the resin. On the other hand when the fibre is not 
much stiffer than the resin the pull-out force is greater 
than Equation 2 would predict, tending to infinity for 
relatively soft fibres. 

An alternative way of stating Griffith's energy cri- 
terion for fracture employs the rate of change of the 
elastic compliance C of the specimen with length c of 
debond [13]: 

F 2 = 4~rrfGa (dC/dc) -1 (11) 

This formulation is particularly suitable for use with 
FEA because the compliance of complex systems is 
readily evaluated. It is employed here to treat the case 
of debonds that are small relative to the radius ro of 
the specimen, when the assumptions on which Equa- 
tions 2 and 9 are based no longer apply. 

2.2. Fibre fracture 
When the stress in the fibre rises to the breaking stress 
%,  it will break again. This will occur when (3 b = Efeb, 
where eb is given in terms of the applied force F by 
Equation 5. Thus, the applied force at which the fibre 
will break again is that at which the pull-put force, 
given by Equation 11, reaches a critical value Fb, 
given by 

Fb = 7rrf2cyb[1 jr_ ~ 1] (12) 

2.3. Matrix cracking 
Results have been obtained previously for the force 
required to make a circular crack grow outwards into 
the resin from a break in an inextensible fibre [11, 12]. 
The force is given by: 

F 2 = 4KaGc(dC/da)-1 = 4~za(ro - r f )EGc/ f  (13) 

where a is the radius of the crack, Go is the fracture 
energy of the resin and f is given by 

d (CE) 
f = (14) 

d[(a - rr)/(ro - rf)] 

The crack propagation force F increases as the crack 
radius a increases until the crack reaches a critical size, 
about half way to the outer radius of the specimen. 
After that, the crack grows catastrophically. Thus, the 
breaking force is rather high for tough resins and 
largely independent of the initial crack radius (i.e. the 
fibre radius) [11, 12]. As shown below, it is also not 
much affected by extensibility of the fibre. Thus, for 
fibres of small radius, failure will always occur either 
by debonding or resin fracture close to the fibre, re- 
sulting in pull-out. The question is: how frequently 
will a fibre break during pull-put? What is the frag- 
mentation length? 
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Figure 2 Representative grid used for FEA. 

3. FEA modelling 
Calculations were carried out using the ADINA FEA 
code [14], with the grid shown in Fig. 2. Because 
of symmetry, only one-half of the specimen was 
modelled. The external radius ro of the resin block was 
chosen to be 3 mm in all cases and the half-length of 
the sample was taken be 25 mm. Fibres having three 
different radii were examined: 435, 25 and 5 gm. 
Axisymmetric quadrilateral 8-noded elements, with 9 
integration points, were used; 15 elements in the radial 
direction and 50 in the length direction for fibres 
having a radius of 435 and 25 gin, and 19 in the radial 
direction and 40 in the length direction when the fibre 
radius was only 5 gin. The elements were discretized 
using logarithmic scales in both the axial and radial 
directions, with the size of the first element in the axial 
direction chosen to be about 20% of the fibre radius 
and in the length direction equal to the fibre radius. 
For  inextensible fibres only one element was em- 
ployed to characterize the fibre in the radial direction. 
For  extensible fibres two radial elements were em- 
ployed. Both the resin and the fibre were assumed to 
be isotropic, incompressible and linearly-elastic. 

To represent inextensible fibres, Young's modulus 
Ef was made several orders of magnitude higher than 
that of the resin: nine orders higher for rf = 435 gm, 
eleven orders higher for rf = 25 gm and twelve orders 
higher for rf = 5 gm. For  extensible fibres, values of 
Young's modulus Ef were assigned of 102 and 103 
times that of the resin for fibres with radius 
rf = 25 ~tm, and l0 s times for rf = 5 ~tm. 

In evaluating the compliance C of a specimen con- 
taining an inextensible fibre, a tensile load was applied 
to the upper end of the fibre without any constraints. 
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Figure 3 Compliance C versus debond length c for a typical speci- 
men (rf = 25 ~tm; ro = 3 ram). E denotes the resin tensile (Young's) 
modulus. 
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Figure 4 Expanded view of initial region of Fig. 3. 

When the fibre was relatively extensible, however, the 
load was applied to one of the fibre nodes on the upper 
surface and all nodes on the upper surfaces of both the 
fibre and the resin block were constrained to undergo 
the same vertical displacement. To allow interracial 
debonding, contact elements were employed at the 
fibre~esin interface, with zero friction. The sample 
compliance C was then calculated for different lengths 
c of debond and the results utilized in Equation 10 to 
calculate the reduced fracture force F* [ = F/(EmGa)I/2"]. 
Values of G, and Go have been made equal, giving the 
interface the maximum possible strength. 

4. Results and discussion 
4.1. Pull-out of inextensible fibres 
A typical relation between compliance and crack 
length c is shown in Figs 3 and 4 for samples with 
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Figure 5 Reduced force required to propagate a debond as a func- 
tion of debond length c for various fibre radii rr. Squares, rf = 5 gm; 
triangles, rf = 25 gin; circles, rf = 435 gm. ro = 3 ram. 

rf = 25 gm and ro = 3 mm. The compliance increased 
dramatically in the beginning and then, for longer 
debonds, increased linearly with length c of debond. 
Values of the reduced pull-out force F*[  = F/(EmGa) ~ 
were calculated by means of Equation 11 from the 
slope of the compliance relations. They are plotted 
against debond length in Fig. 5. Final pull-out values 
obtained in this way increased with fibre radius rf. 
Values from FEA and from Equation 2 are compared 
in Table I: good agreement was found. 

Calculated compliances increased rapidly for small 
crack lengths, suggesting that the initial force is zero. 
This becomes clearer when the initial region is magni- 
fied, Fig. 4. Gent and Wang [12] obtained small but 
non-zero values of the initial debonding force by 
extrapolating calculated forces for debonds of finite 
length back to a zero length (see Table 3 in [12]). 
However, this procedure is inexact for a relatively 
coarse grid. The present results, obtained with a more 
refined FEA grid, indicate that the initial value is 
indeed zero, as would be expected on theoretical 
grounds. 

4.2. Matrix cracking 
Calculated values of compliance are plotted against 
radius a of a circular resin crack in Fig. 6 for speci- 
mens with rf = 25 ~tm and ro = 3 mm. Corresponding 
forces required to propagate the crack were calculated 
from Equations 13 and 14. Reduced forces F* 
(= F/(EmGa, ~)1/2) for resin cracking are compared 
with those for fibre debonding in Figs 7, 8 and 9. 
Values of Ga and Gc have been made equal to give the 
interface the maximum possible strength. 

TABLE I Comparison of F* ( = F/(EmGa) ~ for long debonds from FEA and from theory for different fibre radii 

vf r o Ef/Em F* (FEA) F* (Equation 2) 
(gm) (mm) (mm a/2) (mm 3/2) 

Relative 
error (%) 

5 3 1 0 1 2  1.335 1.33 
25 3 10 it 3.05 2.98 

435 3 1 0  9 12.4 12.29 
25 1 1011 1.02 0.99 

0.376 
2.349 
0.895 
3.030 

1 7 1 0  
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Figure 6 Compliance C versus crack radius a for a circular crack 
growing outwards into the resin, rr = 25 gm; ro = 3 ram. E denotes 
the tensile (Young's) modulus of the resin. 
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Figure 7 Reduced force (circles) required to propagate a lateral 
crack of radius a compared to the reduced force (triangles) required 
to propagate a debond of length c along the fibre, rf = 435 gin; 
t"o = 3 ram. 
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Figure 8 Reduced force (circles) required to propagate a lateral 
crack of radius a compared to the reduced force (triangles) required 
to propagate a debond of length c along the fibre, rr = 25 gin; 
ro = 3 mm. 

In  all cases the force requi red  to p r o p a g a t e  a resin 
crack ou twards  increased  as the crack  grew and  
reached a m a x i m u m  value ( termed "b reak ing  force") 
a t  a po in t  a p p r o x i m a t e l y  half -way to the edge of  the 
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Figure 9 Reduced force (circles) required to propagate a lateral 
crack of radius a compared to the reduced force (triangles) required 
to propagate a debond of length c aIo~g the fibre, rf = 5 gin; 
r o ~ 3 r a m .  

TABLE II Reduced breaking forces F%(=Fb/(EmGc) uz) for 
matrix cracking 

~r (rtm) V~ (mm3/5 

5 16.27 
25 15.68 

435 14,17 

specimen,  as found before, and  in good  agreement  
with exper iment  [12]. The  b reak ing  force d id  no t  vary 
significantly with fibre radius,  Tab le  II, in con t ras t  to 
the pu l l -ou t  force which increased m a r k e d l y  as the 
radius  increased,  as discussed in the  preceding: section. 
However ,  the pu l l -ou t  force was a lways  smal ler  than  
the b reak ing  force. We conclude  that ,  for these  small-  
rad ius  fibres, failure will a lways  occur  by  growth  of  
a d e b o n d  or  cyl indr ical  c rack  a long the f ibre interface, 
ra ther  than  by  la tera l  c rack ing  of  the specimen. 

Again,  as for g rowth  of  a c rack  ou twards  into the 
resin, the present  results  suggest  that  t he  force re- 
qui red  to ini t ia te  a d e b o n d  at  the b r o k e n  fibre ends is 
ac tual ly  zero, ra ther  than  the small  finite values de- 
duced  prev ious ly  using a coarser  grid [12]. 

4.3. Debonding of extensible fibres: 
pull-out or fragmentation 

In Figs 10 and 11 the reduced pull-out force F/(EmGa) 0"5 

is shown as a funct ion of d e b o n d  length for samples  
with rf = 25 #m, ro = 1 m m  and rf = 5 ~tm, ro = 3 ram, 

2 2 and var ious  values of the stiffness ra t io  ~ = re Ef/ro Em. 
W h e n  cx is reduced,  i.e. when the fibre is made: more  
extensible,  the force requi red  to p r o p a g a t e  a long 
d e b o n d  is increased.  F ina l  values Fp ob t a ined  by  F E A  
are c o m p a r e d  with those  p red ic ted  by Equa t ion  9 in 
Table  III.  G o o d  agreement  is seen to hold.  

Relat ive values of the force requi red  to p r o p a g a t e  
a debond ,  represented  by the ra t io  F/Fv,  are  p lo t t ed  
aga ins t  length c of d e b o n d  in Fig. 12. The  small  de- 
b o n d  region is magn i f i ed  in Fig. 13. The  shapes of the 
curves are  qui te  similar.  Indeed,  when the d e b o n d  
length  c is referred to a reduced mean  radius  r*, given 

1 7 1 1  
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Figure 12 Force to propagate a debond of length c, relative to the 
maximum value, for various ratios El~Era of fibre and resin moduli. 
Squares, Ef/Em = 102; triangles, Ef/Em = 103; circles, Ef/Em = 101~. 
rf = 25 gm; ro = 1 mm. 

1.5 

3 

E 
E 

m 
c 5  

2 

u. 1 

. . ; , V . ~ . . ~ : . . ; / z g . . . . ~ . . -  - . . Z N  . . . . . . . . . .  ~ . . . . . . . . . . . . .  x ,  . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . .  

• O ! � 9  0..,0.... 0 .-..-- �9 0 ........... 0 ................. (3 ............. 

O0 1 2 3 
c ( m m )  

Figure 11 Reduced force to propagate a debond of length c, for 
various values of the ratio Ef/Em of fibre and resin moduli. Tri- 
angles, Ef/E m = 105; circles, Ef/E m = 1012. rf = 5 Itm; ro = 3 mm. 

1.0 ............... - ' ~ n ~ ~  " ~ ' - " ;  ~ '~ '" t~ ........... ~ ............ ~ ......... 

0.5 -~(~  

6 

0.0 .~ 
0.0 011 012 013 014 0 . 5  

c ( m m )  

Figure 13 Magnified view of Fig. 12 for short debonds. Squares, 
Er/Em = 102; triangles, Ef/Em = 103; circles, Ef/E,, = 1011. 
rf = 25 gm; ro = 1 mm. 

by  the geomet r i c  m e a n  of the fibre r ad ius  rf a n d  the 
r ad ius  ro of the res in  b lock  in  which  it is e mb edded :  

r* = (rfro) 1/2 (15) 

t hen  the  curves  fo rm a single curve  app rox ima te ly ,  as 

s h o w n  in  Fig. 1,4, for different radi i  of  fibre a n d  block.  
A n  empi r ica l  re la t ion ,  f o u n d  to fit all  of  the  resul ts  
app rox ima te ly ,  is s h o w n  as the full curve  in  Fig. 14: 

'FIFo = t a n h  [1.5 (c/r*) 1/2] (16) 

The  p u l l - o u t  force is seen to increase  up  to a d e b o n #  

leng th  of  a b o u t  2r* a n d  then  it becomes  v i r tua l ly  
cons tan t .  If  the fibre is inex tens ib le  a n d  the  r ad ius  r* is 
re la t ively  large, as cons ide red  p rev ious ly  [11, 12], t h e n  

the  p u l l - o u t  force will be smal l  in  c o m p a r i s o n  to the 
expected s t r eng th  of the  fibre a n d  the fibre will be 
pulled~ ou t  w i t h o u t  b reak ing .  However ,  if the f ibre 
r ad ius  rf is 0n ly  a few microns ,  t hen  the f inal  p u l l - o u t  
force m a y  be greater  t h a n  the fibre can  wi ths tand .  In  

this case the  fibre will b reak  w h e n  the d e b o n d  has  
g r o w n  on ly  a smal l  .distance. Successive f ractures  of 
this k i n d  are t h o u g h t  to be  the  m e c h a n i s m  of f ibre 
f r agmen ta t i on .  

A d e b o n d  can  g row f rom b o t h  ends  of a fibre 
f ragment .  Thus ,  a f r agmen t  will b r eak  aga in  if its 
l eng th  is m o r e  t h a n  twice the l eng th  of  d e b o n d  at  
which  a c o n s t a n t  p u l l - o u t  force is achieved (and  tha t  
force is greater  t h a n  Fb). W e  conc lude  f rom Fig. 14 

TABLE III Reduced values of final pull-out force for debonding extensible fibres 

re ro El~Era F* (FEA) F* (Equation 9) Relative 
(gm) (mm) (mm 3/2) (mm 3/2) error (%) 

5 3 105 2.93 2.86 2.45 
25 1 102 4.21 4.09 2.93 
25 1 10 a 1.645 1.60 2.81 

1 7 1 2  
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Figure 14 F o r c e  to p r o p a g a t e  a d e b o n d ,  relat ive to  the m a x i m u m  

value ,  versus  d e b o n d  l eng th  c, re lat ive to  the  g e o m e t r i c  m e a n  r a d i u s  

r* o f  f ibre a n d  res in  b lock ,  for  v a r i o u s  f ibre rad i i  a n d  m o d u l u s  r a t ios  

Er/E m. Full  curve: F/Fp = t anh  [1.5 (c/r*)~/z]. rf = 5 pm, ro = 3 mm;  

Ef/Em=iO s, A;  Er/Em=lO lz, O .  r f = 2 5 g m ,  r o = l m m ;  

Er/Em = t02 , ~ ;  Er/Em = 103 , V ;  Ef/Em = 1011, ~ .  rf = 435 gm,  

ro = 3 ram;  Ef/Em = 109, Q .  

that fragment lengths I~ will be about 5r* at most, or 
about 500 gm for a fibre of radius 5 btm embedded in 
a resin block of radius 2 mm. If a debond can grow to 
this size under a force less than Fb, then the fibre will 
pull out without breaking again. On the other hand, if 
the interface is relatively strong, then the force to 
propagate a debond will be greater and the fibre will 
break again when the debond has grown only a short 
distance along the fibre. In this case the final fragment 
length will be correspondingly short. Thus, an inverse 
relation is expected between fragment length, taken as 
twice the debond length, and fracture energy G, 
for the interface. And the computed fragment 
lengths are comparable to, although somewhat small- 
er than, those observed in practice, i.e. about 0.2 to 
1 mm for fibres of a few btm in radius, embedded in 
a long resin block of 1-2 mm in width and thickness. 
Thus, the present analysis appears to account for the 
general features of fragmentation observed with fine 
fibres. 

It should be mentioned that the final value of the 
fracture force, especially for extensible fibres, depend- 
ed on details of the FEA grid employed. When only 
one element was used to represent the fibre radius the 
pull-out force did not reach a constant value at large 
debonds and the values were larger than predicted by 
Equation 9, Fig. 15. Adding one more element im- 
proved the results, but there was still about 3 per cent 
error for large debonds. It is thought that the results 
have a similar accuracy for other sizes of debond also, 
but it would clearly be better to use still more elements 
to represent an extensible fibre. 

4.4. Effect of stiffness ratio c~ on fragment 
length 

An implicit relation between fragment length and frac- 
ture energy of the interface is contained in the empiri- 
cal relation, Equation 16, found to hold between 
applied force F and debond length or crack length 
c. Fracture of the fibre will occur when F reaches the 
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Figure 15 Effect of  n u m b e r  n of  r ad ia l  g r id  e lements  in f ibre o n  

d e b o n d  force F. O p e n  symbols ,  n = 1; filled, n = 2. r e = 25 gm;  

ro = 1 ram.  Tr iang les ,  El~Era = I02; circles, Ef/Em = 103. 

value F b at which the stress on the fibre exceeds its 
breaking stress. (We assume for simplicity that F b is 
given by Equation 12, although this relation will be 
strictly correct only when the fibre fragment length is 
much greater than the mean radius r*.) Taking the 
applied force F to be a significant fraction, say one- 
half, of the final pull-out force f p ,  Equations 12 and 16 
are found to yield large values of fragment length only 
when the fibre is much stiffer than the matrix, a >> 1. 
For  relatively soft fibres the predicted debonded 
length is extremely small, comparable to the fibre 
radius. This conclusion appears to hold over a wide 
range of possible values for the interfacial fracture 
energy Ga. However, although the fragment length is 
predicted to increase with modulus ratio a, in accord 
with the experimental observations of Asloun et al. 

[10] and Nardin et  al. [15], it is not known to what 
extent the fracture energy G, of the interface was also 
changed in their experiments. Quantitative compari- 
son of predicted fragment lengths with experimentally- 
observed values is therefore not feasible. We can con- 
clude only that an increase in fragment length with 
both modulus ratio and ratio of cross-sectional area of 
fibre and resin is to be expected, and that in the extreme 
case of stiff, weakly-bonded fibres, the fragment length 
becomes many times larger than the fibre radius (as is 
commonly observed), eventually reaching a value of the 
order of the mean radius r* of fibre and resin block. 

5. Conclusions 
1. Pull-out forces have been calculated for fibres 

having relatively long debonded lengths, for various 
ratios cz of fibre stiffness to resin stiffness. It is con- 
cluded that pull-out forces are greater for softer fibres. 

2. Applied forces at which a small debond will 
propagate have also been calculated by FEA. They 
increase as the length of debond increases to reach 
a final value (the pull-out force) when the debond 
length is comparable to the geometric mean radius 
r* of the fibre and resin block in which the fibre is 
embedded. 

3. Assuming that the fibre breaks before the final 
(pull-out) force is reached, values of the fragment 
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length Ic, taken as twice the debond length, are pre- 
dicted to fall somewhat below 500 gm for fibres of 
typical radii, 5 gin, embedded in resin blocks of typical 
width and thickness, 2 ram. Thus, the general order of 
magnitude of observed lengths of fibre fragments is in 
accord with the hypothesis that the fibre breaks again 
when the applied force required to propagate a de- 
bond along the fibre reaches a sufficiently high value. 

4. When the stiffness of the fibre is comparable to 
or less than that of the resin block, it is concluded that 
fibre fragments could become extremely small in 
length, of the order of the radius of the fibre. In these 
circumstances the assumptions on which the analysis 
is based will cease to hold. (Moreover, even if such 
small fragments were formed, they might pass 
unnoticed.) 
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